Self-assembly of subwavelength nanostructures with symmetry breaking in solution.

نویسندگان

  • Xiang-Dong Tian
  • Shu Chen
  • Yue-Jiao Zhang
  • Jin-Chao Dong
  • Rajapandiyan Panneerselvam
  • Yun Zhang
  • Zhi-Lin Yang
  • Jian-Feng Li
  • Zhong-Qun Tian
چکیده

Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution.

Thermodynamically driven self-assembly offers a direct route to organize individual nanoscopic components into three-dimensional structures over a large scale. The most thermodynamically favourable configurations, however, may not be ideal for some applications. In plasmonics, for instance, nanophotonic constructs with non-trivial broken symmetries can display optical properties of interest, su...

متن کامل

Breaking the symmetry: assembly of cylindrical nanostructures with a C3-symmetrical ligand.

The reaction of a tripodal ligand containing terminal 2,3-dihydroxypyridine groups with (arene)ruthenium(II) complexes resulted in the formation of cylindrical nanostructures.

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

RICE UNNERSITY Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems

Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems

متن کامل

Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers.

Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016